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ABSTRACT 

It is proved that if the Banach space E has an unconditional basis and if F is 
another Banach space, the following two assertions are equivalent: (1) There 
is a non-compact bounded linear operator from E into F'. (2) The space of 
bounded linear operators from E into F'  has a subspace isomorphic to c 0. 

Let F be a Banach space. This paper determines a necessary and sufficient 

condit ion in order that  K(E,F') be a proper  subspace o f  L(E, F'), for the case 

where E is a Banach space with uncondi t ional  basis. When E '  or  F '  have the 

approximat ion property,  this gives a condit ion when E' ®~F' ~ (EQrF)'. Here, 

denotes the greatest crossnorm and 2 the least crossnorm as defined in Schatten 

[4]. For  the case where E = F = 12, it is well known that  (E @~F)' = L(E,F') 
E '  ® a F '  and that  the subspace in L(E, F') consisting o f  all bounded  linear 

operators given by diagonal  matrices is isometric to loo. The necessary and suf- 

ficient condit ion (see (1.5) which we give in order that  K(E, F') ~ L(E, F') is to 

require that  L(E, F') contain a complemented subspace which is norm isomorphic 

to l~o or that  E @aF contain a complemented subspace which is norm isomorphic 

to la. 

Whenever we refer to a Banach space E as having a Schauder basis we shall 

assume that this Schauder basis has been normalized, i.e. 11 n. I[ = 1 for  all n, where 

n,(x) = ~l<_,<_,(x, e'i)ei and {ei, el} is the Schauder basis system. (See Theorem 1, 

p. 67 of  Day  [3].) 
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If  E, F are arbitrary Banach spaces, L(E, F) will denote the space of bounded 

linear operators from E into F, given the operator norm; K(E, F) will denote the 

subspace of compact operators. 

1. DEFINITION 1.1. Let E be a Banach space with Schauder basis {ei, e~}. We 

say that {ei, e'i} is an unconditional basis if, in addition, ]~i(x, e'i)e i converges (in 

the norm) to x regardless of rearrangement. 

I f  E is a Banach space whose elements are sequences x = (x(1),... x(i), ...) 

(where x(i) is a scalar), and S is any set of indices then 7Cs(X ) denotes the sequence 

whose ith term is x(i) if i ~. S and is zero if otherwise. I f  E is a Banach space with 

unconditional basis then it may be regarded as a space whose elements are 

sequences and rc s is a projection of E into itself; without losing generality, we may 

assume that E is normed in such a way that I[ ~Zs 11 = 1 (see Theorem 1, p. 73 of  

Day [3].) If  S = {1, 2, ..., n}, we shall write re, to denote zc s. Let n (1)<  n(2) 

< . . . < n ( k ) < . . .  be a sequence of indices. Let S ( k ) = { i : n ( k - 1 ) + l < i  

< n(k)}. We shall write ~Ckl to denote ~S(k)" 

PROPOSITION 1.2. Let E be a Banach space with a Schauder basis. Let F be a 

Banach space. Let T: E--+ F be a bounded linear operator. I f  T is not compact, 

then there exists a sequence of indices n(1)<  n(2)<  ... < n(k)< ... and an 

e> 0 so that I[ Z~Eklll >~ for all k. 

PROOF. For, if the conclusion were false then we shall have that lim, ll T~.- rll 

= 0, so that T is compact, contrary to assumption. 

THEOREM 1.3. (Bessaga-Petczyfiski). Let F be a Banach space. Let ]~i Yt 

be an unconditionally summable series in the weak topology ofF.  Suppose that 

~,i Yi does not converge in the norm. Then there is a sequence of indices n(1) 

< n(2)<  ... < n(k)< ... so that {Yk} forms a Schauder basis for a subspace 

which is norm isomorphic to c, where Yk = ]~n(k-D<i<=n(k)Yv Furthermore, i f  F 

is also the dual space of some Banach space, say F = G', then (a) the weak* 

limit of ~kCkYk exists whenever {Ck} is a bounded sequence of scalars and the 

subspace in F of all such elements forms a complemented subspace in F which is 

norm isomorphic to loo; (b) G contains a complemented copy of 11. 

PROOF. See Theorem 5 in Bessaga-Petczyfiski [1] and Theorem 1 in Bessaga- 

Petczyfiski [2]. 

The following is a well known consequence: 
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COROLLARY 1.4. Let T: co ~ F be a non-compact bounded linear operator. 

Then 

(a) F contains a subspace which is norm isomorphic to c o. 

(b) I f  F I , F  2 are  Banach spaces and F1 × F2 contains a subspace which is 

norm isomorphic to c o, then either F 1 or F 2 contains a subspace which is norm 

isomorphic to Co. 

Let E and F denote infinite dimensional spaces. 

THEOREM 1.5. Let E be a Banach space with unconditional basis. Let F be 

an arbitrary Banach space. Then the followin9 are equivalent: 

(1) K(E,F ' )  is a proper subspace of L(E,F' )~-(E®~F) ' .  

(2) (E ®~F)'  contains a subspace which is norm isomorphic to Co (equivalently, 

a complemented subspace which is norm isomorphic to loo). 

(3) E ® ~F contains a complemented subspace which is norm isomorphic to 11 ; 

Moreover, in the special case where E = c o, we may add to the above list of  

equivalent conditions: 

(4) F' contains a complemented subspace which is norm isomorphic to IB. 

(5) F contains a complemented subspace which is norm isomorphic to 11. 

PROOF. The assertion of (1) implies that there is a non-compact bounded linear 

operator T : E  ~ F'. By (1.2), we may conclude that there exists e > 0 and a 

sequence of indices n(1) < n(2) < . . .  < n(k) < . . .  so that H TTrEkl ][ > e  for all k. 

Let a be a finite index set. Let 7rM= ~k~t77~[k]. Let T k =  T~Z[k ]. Then 

Xk~ Tk = TrcE~ 1. Hence, II ~'k~Tkll <= II T 11 for any finite index set a. Thus, 

~kTk is an unconditionally summable series in the weak topology of L(E, F'). 

Since II rkl[ = [J II > ~, this series is not Cauchy in the norm. Therefore (1.3) 

applies and L(E, F') contains a subspace which is norm isomorphic to c o. 

(2) ~ (3): immediate from (1.3). 

(3) ~ (1): If  E ®~F has a complemented subspace which is norm isomorphic 

to 11, then (E ® ~F)' contains a complemented subspace which is norm isomorphic 

to l®. It suffices, then, to show that if L ( E , F ' ) ~  (E®~F) '  contains a subspace 

which is norm isomorphic to Co, then K(E,F ' )  is a proper subspace of L(E ,  F'). 

First, assume that F '  contains a subspace which is norm isomorphic to co. 

In this case, (1.3) shows that F '  contains a complemented subspace which is norm 

isomorphic to l~. But since l~ contains an isomorphic copy of any separable 

Banach space, F' contains an isomorphic copy of E, and therefore K(E, F') 

# L(E,F').  



454 A.E. TONG Israel J. Math., 

Suppose next that F '  does not contain a subspace which is norm isomorphic to 

c o and that: K(E,  F')  = L(E ,F ' ) .  Since every seperable 13anach space is a quotient 

space of 11 it follows that E does not contain a complemented subspace which is 

norm isomorphic lto 11. By assumption, there exist norm one operators {Ti} 

in L(E, F')  which forms a Schauder basis for a subspace C which is norm isomor- 

phic to Co. Thus, II ~'~-~ T, II =< K for any finite index set ~r. The operators {Ti} 

are all compact operators. Define F;, = F '  for all k and p,,,,,.: C--,, X ,,,<_,<_,,F~ by 

setting pm,,(Ti) = (Ti(e,,,), "" Ti(e,,)) where (e,} is the unconditional basis of E. 

If  any of the operators Pm,n were non-compact then (1.4) shows that at least 

one of the spaces F~ = F '  contains a subspace which is norm isomorphic to 

Co, contrary to assumption. Thus all the operators p,,,. are compact and so 

lim,I [ p,,,.(Z,)II = 0 since T, is a weakly o-convergent sequence. Since E does not 

contain a complemented subspace which is norm isomorphic to 11, we may assert 

that lim.[] Z ~ .  - z~ l l - - 0  for each k. (For, by Theorem 3 p. 76 of Day [3], E' 

has an unconditional basis. By Schauder's Theorem, the adjoint operator T~ is 

compact and hence lim.][ n,iT' k - Tk'[] = O. Therefore, lim.H Tkn . - T k II = 0 )  
Now choose a subsequence {Tk} of {Ti} and choose indices n(k) inductively so 

that: 

(1.5.1) 

(1.5.2) 

Thus, if ntkl 

II - II 

= n,(k)- n,(k-~), then II T k n t k l -  Tk II < 

Therefore, Zk Zk~[k] is an unconditionally summable series in the weak topology 

which is not norm convergent. By (1.3), the weak* limit T = ZkTkZ~ka is an operator 

in L(E, F'). If  T is a non-compact operator, then we are finished. Suppose then that 

T is compact. Let F o denote the closed linear subspace generated by 

{r~(E): k = 1,2,...}. 

Since each Tk is a compact map, Fo is a separable Banach space and hence (by 

Theorem 9, p. 185 of Banach: Th6orie des Op&ations Lin6aires; Chelsea Publishing 

Co., New York) Fo is norm isomorphic to a suitable subspace of a Banach space G 

with Schauder basis system, {gi', g~}. Without explicitly referring to the isomorphism 

mapping Fo into G, we shall hereafter regard T and T k as mapping E into G. Since 

T is compact, there exists an integer p so that 
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IIT-~TII  < 1  where roy(z)= ~ (z ,g ' )g i. 
l < * < p  

If  x k are unit vectors in E chosen (by using (1.5.1)) so that [[ TkrCtk3(Xk)ti > ½' then, 

using the the fact that Tkrrrk I = Trcm, we get: 

II T,~t,3(x,)l l-  I[( 1 - ~ ) T ~ c , ( x * ) I I  > ~ - I 1 (  1 - ~,)z'~,(x~)ll > ~ - ~  = ~. 

Since ~Zp(G) is finite dimensional, there is a subsequence of {~ZvTkrCtk3(Xk) } which 

converges in the norm to some non-zero vector z where II z II > ¼" We continue to 

denote this subsequence by OZvTkrrrk3(Xk)}. Let z' be a linear functional of norm 

one so that z ' ( z )= II z II Since 

k e a  k ~ r  

we have that: 

It Z (rCpTkrCtkl('),Z')I] <=Ilrcplt (K + 1) llz'II 
kEo" 

for any finite index set ~r. 

Thus, ~,k(rrpTkrCtk3(" ), Z') is weakly unconditionally summable in E' but is not 

norm convergent since (rCoTkrrm(Xk), Z') converges to II z II. By part (b) of Theorem 

(1.3), we see that E contains a complemented subspace isomorphic to Ii, contrary 

to assumption. Thus, T has to be non-compact. 
Q.E.D. 

(1)=>(4): If  E = co and K(E,F') is a proper subspace of (E®yF) '  then the 

argument above implies the existence of a non-compact operator T : E - ~ F ' .  
By (1.4) and (1.3) F '  contains a complemented subspace which is norm isomor- 

phic to Ioo. 

(4) => (1) is obvious and (4)~(5)  is immediate from (1.3) 

REMARK. If  either E'  or F '  has the approximation property, then the above 

theorem may be replaced as follows: Let E be a Banach space with unconditional 

basis.Then, E' ® x F' is a proper subspace of (E ® ~ F)' if and only if E @ r F contains 

a complemented subspace which is norm isomorphic to 1 I. 
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